:Zionolith to\mibmSQ@S

igration: 10 critical
hallenges to consider

ith in-depth examples'"-.,l

Written by
Emre Baran, Cerbos CEO

Table of contents

1. Determining service boundaries and decomposing your monolith

2. Decentralizing data management

17

3. Establishing inter-service communication patterns

4. Service discovery and load balancing

5. Monitoring and observability.

6. Testing and deployment strategies

7. Security and access control

8. Performance and scalability

9. Organizational and cultural shift

10. Team collaboration and code ownership

27
37
43
50
57
67
74

https://bit.ly/3WGwvaF

Chapter1

Determining service boundaries

and decomposing your monolith

https://bit.ly/3WGwvaF

Transitioning from a monolithic architecture to microservices is an intricate,

time-consuming task. It demands both strategic foresight and meticulous execution.

In this 10-part ebook, we'll guide you through the most common challenges faced
during monolith to microservices migration. In this first chapter, we'll start with the
pivotal task of decomposing your app and defining service boundaries.

“Despite the level of effort and cost to migrate to microservices, the benefits
far outweigh the cons, especially because you will never need to replatform
again.” - Thoughts from Ryan Bartley, ex-eBay, Co-founder at Canopy

Service boundaries, cohesion, and decomposition

Your first major hurdle when decomposing a monolith application is defining
appropriate boundaries for each microservice. Creating the right boundaries will lay
a robust foundation for your microservice transition without creating excess

complexity.

The process involves breaking down a monolithic application into smaller,
independently deployable services that align with business capabilities or domains.

Your goals at this stage are to:

e Define boundaries between microservices by understanding how services
align with business capabilities.

o Define relationships between microservices by balancing cohesion within a
service with loose coupling.

o Cohesion refers to the degree to which the components within a service
are related and focused on a single responsibility. A highly cohesive
service encapsulates related functionalities and data, making it easier
to understand, develop, and maintain.

https://www.quora.com/How-can-I-migrate-from-monoliths-to-microservices
https://bit.ly/3WGwvaF

o On the other hand, loose coupling ensures that services can be
developed, deployed, and scaled independently, without tight
dependencies on other services.

If services are too coarse-grained—with multiple responsibilities and tight
coupling—they can become what is commonly known as a “distributed monolith”.
This effectively negates the benefits of microservices.

Conversely, if services are too fine-grained, with overly narrow responsibilities, it can
lead to increased complexity, performance overhead, and difficulties in data
consistency and transaction management.

To strike the right balance, you should start with a domain analysis. Once you've
identified the core business capabilities, you can gradually extract services based on
them. Techniques like event storming, domain storytelling, and use case analysis will

also help you on the way.

How to define boundaries between microservices

To identify the right service boundaries, use the following principles: Domain-Driven

Design and Single Responsibility Principle.

https://www.eventstorming.com/
https://domainstorytelling.org/
https://bit.ly/3WGwvaF

Microservices

[User registratiosnj

] Authenticati
Monolithic architecture / uthentico ch

[Authorization)

User occess

_— (Cart Service

Shoppins, cart

Product />[Product Co:ta‘mj

momaae,me,nt /9
\ [InVQn‘ton/

S \$
[Pat/men'ts

)

)

)
Reporting T~ [Refunds %
N et
\[r ugle,- A::v:yg j]

Repor‘tins,

J00%aE]

Domain-Driven Design (DDD)

In DDD there's the concept of bounded context that is helpful in defining boundaries

between microservices. Each bounded context represents a specific domain or
subdomain within the business that contains its own ubiquitous language, domain
model, and set of business rules.

“DDD is solving a complex problem by usually breaking the problem into
smaller parts and focusing on those smaller problems that are relatively easy.
A complex domain may contain sub domains. And some of sub domains can
combine and group with each other for common rules and responsibilities”,
explains Mehmet Ozkaya, ex-Ericsson Software Solutions Architect and Udemy

course creator.

During decomposition, it's helpful to think of each service as a bounded context. Any
microservice that responds to that bounded context becomes part of that service's

https://dddcommunity.org/
https://martinfowler.com/bliki/BoundedContext.html
https://medium.com/design-microservices-architecture-with-patterns/decomposition-of-microservices-architecture-c8e8cec453e
https://bit.ly/3WGwvaF

domain. So, by mapping your services to bounded contexts, you ensure each service
has a clear and focused responsibility aligned with the business domain.

Single Responsibility Principle (SRP)

SRP is the first of five principles in the SOLID approach to object-oriented design. SRP
states that a class or module should have only one reason to change.

When you apply SRP to monolith decomposition, it guides the process to constrain
each service to a single, well-defined responsibility. All related data and
functionalities are then encapsulated within that domain.

Finding the right balance

Decomposing a monolith application into microservices is not a simple or
straightforward process. Doing it well requires an iterative approach, with continuous
refactoring and evolution.

Here is some good advice from Eldad Palachi, Principal Architect at vFunction on how

to get started:

“Start with functionality that is already somewhat decoupled from the
monolith, does not require changes to client-facing applications, and does
not use a data store. Convert this to a microservice. This helps the team
upskill and set up the minimum DevOps architecture to build and deploy the

microservice.”

Now, let’s take a look at how companies decompose a monolith in real life.

https://vfunction.com/blog/monolith-to-microservices/#toc-heading-6
https://bit.ly/3WGwvaF

How Netflix decomposed their monolith into
microservices

Through an iterative process, Netflix successfully decomposed their monolithic
application into microservices using DDD and SRP principles.

Utilizing bounded contexts

First, Netflix identified key bounded contexts within their business domain, like user
management, content catalog, recommendations, and playback. Then, each
bounded context was mapped to a set of microservices responsible for that specific
domain.

For example, the user management bounded context was decomposed into services
like:

e user authentication

e user profile

® user preferences

These services encapsulated the related functionalities and data, ensuring high
cohesion within each service.

Implementing SRP

Netflix also applied SRP to their microservices design. So, each service had a clear
and focused responsibility, such as handling user authentication, managing the
content catalog, or providing personalized recommendations. This approach
allowed Netflix to develop, deploy, and scale services independently, which promoted
loose coupling and greater flexibility.

https://bit.ly/3WGwvaF

Optimizing with patterns

To handle complex business transactions and ensure data consistency, Netflix used
patterns like event sourcing and CQRS (Command Query Responsibility

Segregation).

Event sourcing allowed them to capture all changes to a service's state as a
sequence of events. This provided a complete audit trail and enabled event-driven
architectures. CQRS separated the read and write responsibilities of a service, which
optimized performance and scalability.

Gradually improving architecture

Netflix gained insights into service performance after decomposition through
monitoring, logging, and tracing. Using this data, they identified improvement
opportunities and continually refined their service boundaries. Over time, they
optimized their microservices to maintain alignment with business domains.

How Netflix benefited from decomposition

Applying domain-driven design, SRP, and continuous refactoring, Netflix
decomposed its monolith into cohesive and loosely coupled microservices. This
allowed them to scale their platform, accelerate development, and deliver a

seamless streaming experience.

https://martinfowler.com/eaaDev/EventSourcing.html
https://martinfowler.com/bliki/CQRS.html
https://martinfowler.com/bliki/CQRS.html
https://bit.ly/3WGwvaF

Chapter 2

Decentralizing data management

https://bit.ly/3WGwvaF

Data management and consistency

Unlike monolithic applications—where data is stored in a single, centralized
database—microservices typically take a decentralized data management
approach. Often, each service will have its own, dedicated database or data store,
optimized for its specific requirements. Decentralized data management brings both
strengths and challenges with it.

In this chapter, we will cover the strengths and challenges you should know before
you migrate to a decentralized data storage system. Then, we'll suggest patterns &
techniques you can use to overcome those challenges. Let's start with the good part.

Strengths of decentralized data management

Stre,ng'tl\s of decentralized data management

N Flexibility in the))
Sco‘lab\lsty tech stack Performance Fault isolation

1. Scalability

Each microservice can scale independently based on its specific load and
performance requirements. Decentralized data architecture allows more efficient
resource utilization and better handling of varying traffic patterns across different

parts of an app.

https://bit.ly/3WGwvaF

2. Flexibility in the tech stack

Teams are free to plug-and-play their preferred data storage solutions (e.g., SQL,
NoSQL, in-memory databases) so they can find the solution that best fits the
service's needs. This means each team can tailor its data storage strategy for
optimal performance of each service.

3. Performance

When your team isn’t stuck with one option, they can increase the speed of query
execution and data retrieval by tailoring data storage technology to each service’s
unique access patterns and data types.

4. Faultisolation

If one service encounters an issue, it does not necessarily impact the entire system.
This isolation enhances system reliability and makes it easier to manage
expectations and maintain uptime. So you get a better resilience against the system

failures overall.

Challenges of decentralized data management

Before you embrace decentralized data management, you should be aware that
there are difficult challenges to overcome, including increased complexity in
development and data integration and issues with integrity and latency.

[CL\O\"er\ges of decentralized data Manasemer\t J

Comp'ex data Increased o‘eve_lopmer\t L.atenctf Iv\&:&a&f_o‘ Data integritl/
Tnte.grat?on comp|e,xi'ty issues secunty risks

https://bit.ly/3WGwvaF

1. Complex data integration

Integrating data from multiple decentralized sources can be complex and
time-consuming. With different nodes running different storage solutions, data
interoperability and compatibility become critical considerations to ensure seamless
data exchange.

2. Increased development complexity

Managing multiple databases requires sophisticated strategies for data replication,
synchronization, and consistency. This can make the system harder to develop, test,
and maintain.

3.Latency issues
Network communication between microservices can increase latency, especially

when microservices need to access data from multiple sources.

4.Increased security risks

Decentralized data requires a robust security system that maintains security over
multiple nodes. Implementing encryption, access controls, and authentication
mechanisms across the system is essential to ensure the safety of your data.

5. Data integrity
Maintaining data integrity requires thoughtful planning to ensure that business rules
and validations are consistently applied across all decentralized services.

If you want to dive deeper into the potential data headaches, we highly recommend
checking Chad Sanderson, CEO at Gable.qi, ex Microsoft. Substack:

“In the traditional on-premise Data Warehouse, an experienced data
architect was responsible for defining the source of truth in a monolithic
environment. While slow and somewhat clunky to use, it fulfilled the primary
role of a data ecosystem. Smart, hard-working data professionals maintained

https://dataproducts.substack.com/p/data-is-not-a-microservice
https://bit.ly/3WGwvaF

an integration layer to ensure downstream consumers could reliably use a

set of vetted, trustworthy data sets.

In the world of microservices, however, there is no truth with a capital ‘T.” Each
team is independently responsible for managing their data product which
can and often will contain duplicative information. There is nothing that
prevents the same data from being defined by multiple microservices in
different ways, from being called different names, or from being changed at
any time for any reason without the downstream consumers being told about

it.”
Patterns and techniques to address data management

challenges

While there are no plug-and-play solutions to the above issues, there are patterns
and techniques companies have successfully used to mitigate their impact.

1. Eventual consistency accepts that temporary inconsistencies between services
may occur but guarantees that the system will eventually reach a consistent state.
By allowing this trade-off the system can achieve higher availability and

performance in scenarios where strong consistency is not essential.
2. The Saga pattern manages distributed transactions through a sequence of local
transactions, ensuring eventual consistency. Each service involved in a transaction

performs its local transaction and publishes an event to trigger the next step.

3. Event sourcing captures all changes to an application’s state as a series of events.

Instead of storing the current state, events are persisted in an event store. Services
can subscribe to these events and reconstruct their state by replaying the event
stream. Event sourcing ensures data consistency, provides a comprehensive audit
trail, and supports eventual consistency.

https://en.wikipedia.org/wiki/Eventual_consistency
https://microservices.io/patterns/data/saga.html
https://martinfowler.com/eaaDev/EventSourcing.html
https://bit.ly/3WGwvaF

4. Domain-driven design (DDD) helps define clear boundaries and responsibilities
for each service. DDD (which we covered in a previous chapter) ensures that data

ownership and consistency are maintained within the service boundaries by better
aligning the business domain and the microservices architecture.

5. Command query responsibility segregation (CQRS) separates the read and write

operations of a service into different models, optimizing for different data access
patterns and scalability requirements. When read and write operations are
separated, the system can more efficiently handle queries and commands,
improving the overall system performance and scalability.

Now that we've covered the concepts, let’'s take a look at how all of that plays out in
the real world. As in the previous chapter, we'll dive deeper into a case study. This
time, we'll see how Uber dealt with these challenges.

How Uber ensured consistency and speed across
millions of requests

Uber fields millions of simultaneous rides per minute. Each of those rides accesses
driver requests, payment services, user drop-off data, and more. So when they
scaled their microservices architecture, they faced significant data management
and consistency challenges.

So, how did Uber scale without losing control of their data? To ensure data
consistency, platform integrity, and provide a seamless user experience while
scaling, they had to completely rethink how they stored and accessed data.

Coordinating interactions with the saga pattern

Remember the Saga pattern? Uber chose it to coordinate interactions between

services, including user, service, and payment services. So when a user requests a

https://dddcommunity.org/
https://docs.microsoft.com/en-us/azure/architecture/patterns/cqrs
https://bit.ly/3WGwvaF

ride, each service performs its local transaction and publishes events to trigger the
next step in the saga. If any step fails, compensating actions roll back the previous
steps to maintain data consistency.

Capturing all actions with event sourcing

Event sourcing helped Uber capture all changes to their system as a sequence of
events. Each service publishes domain events whenever there is a state change, like
a ride request, or drop-off. Other services consume these events and update their
own state to reflect the event. With event sourcing, the team had a complete history
of all actions, which they could use for data auditing, debugging, and analysis.

Maintaining data consistency with DDD

Uber applied DDD principles to ensure data integrity and enforce business rules. They
defined clear bounded contexts for each domain, such as user management, ride
management, and payment processing. Then, they gave each bounded context its
own set of services, data models, and business rules. These strong borders ensured
data consistency within the context boundaries.

Using CQRS to scale systems independently

With this new architecture, Uber needed a way to take advantage of the decoupled
scaling microservices allow. They chose Command Query Responsibility Segregation
(CQRS) which allowed them to optimize data access patterns and separate read
and write responsibilities.

This allowed Uber to scale each service independently based on the specific
requirements of each operation. As a result, the Uber team was able to drive
performance improvements where it mattered and more easily maintain their
microservices architecture.

https://bit.ly/3WGwvaF

Visibility in a distributed system

With their app distributed across various systems, Uber needed a way to see if their
systems were working together as designed. So, they invested in monitoring, logging,
and tracing capabilities to gain visibility into their distributed system.

They used:
e Jaeger for distributed tracing

e Apache Kafka for event streaming
e Apache Cassandra for high-performance data storage

These tools helped their engineering team identify and troubleshoot data
consistency issues, ensure reliable event delivery, and maintain the overall health of
their microservices ecosystem.

Two-pronged plan

Decentralized data management challenges do pose a risk to those who aren't
aware of them. But with proper planning and tools, they can be handled, which is
exactly what Uber did. They applied successful patterns and techniques and backed
them up with robust monitoring and data management technologies.

With those techniques in place, Uber maintained data consistency and integrity
while scaling their large-scale microservices architecture, enabling them to deliver a
reliable ride-hailing experience.

https://www.jaegertracing.io/
https://kafka.apache.org/
https://cassandra.apache.org/
https://bit.ly/3WGwvaF

Chapter 3

Establishing inter-service

communication patterns

https://bit.ly/3WGwvaF

Picking the right communication pattern for your
microservices

Without seamless communication between microservices, the functionality of the
app and the experience of the end-user suffers. To make sure you maintain a good
user experience you need to tailor inter-service communication to match the
demands of your system and make sure it can handle failure scenarios.

The first step to tailoring communication in your system is finding the right

communication patterns.

Synchronous communication

Synchronous communication patterns, such as REST or gRPC, are simple
request-response interactions. A service sends a request and then waits for a

response from another service.

o REST (Representational State Transfer) is a stateless protocol often used over
HTTP. It's highly scalable and widely supported.

e gRPC (Google Remote Procedure Call) uses HTTP/2 for transport, providing
features like bi-directional streaming and efficient binary serialization.

When multiple microservices synchronously communicate (like in the diagram
below), they end up executing the interactions in series. This means the final
response must come after all other steps have finished.

L. HTTP Rea. 2. HTTP Rea.
Microservice > Microservice _—>
+#1 #2
&

4, HTTP Res.

https://bit.ly/3WGwvaF

This approach ensures consistency, but can also create a performance bottleneck if
not managed properly. It's also important to note that synchronous communication
creates tight coupling between all involved services. This pattern is ideal for

scenarios that require immediate feedback, including simple and direct interactions.

But, many microservices interactions require complex interactions between multiple
microservices. That requires a more complex communication pattern.

Asynchronous communication

Asynchronous communication patterns involve services interacting with each other
without waiting for an immediate response. Common asynchronous communication
patterns include message queues and streaming platforms.

e Message queues, like RabbitMQ and Apache ActiveMQ, operate much like a
message board. Instead of waiting in line to give a message, one microservice
simply leaves a message in a queue. These messages are then processed by
the receiving services when it is able.

e Streaming platforms, like Apache Kafka, allow microservices to publish and
subscribe to continuous flows of data, while at the same time providing a
scalable and highly available service.

2. Reod Mmro;;rv.ce
—_—

1. Publish
/[Message queue]

Microservice
#1
3, Publish

6. Read
Message queue] [Message queue]

\[

https://www.rabbitmq.com/
https://activemq.apache.org/
https://kafka.apache.org/
https://bit.ly/3WGwvaF

When multiple microservices use a queue to asynchronously communicate (like in
the above diagram), each is free to leave a message without waiting for an answer.
The result is non-linear communication that does not require each service to wait
before executing.

This pattern decouples services, enhancing scalability and fault tolerance. So,
services can work independently from each other, mitigating potential bottlenecks. It
does, however, introduce more complexity than synchronous communications.

Event-driven architecture

Event-driven architectures extend asynchronous communication by focusing on
events, which are significant state changes associated with a point in time. Services
publish events, then other services consume (or subscribe to) these “event streams”
as needed.

e Event publishing - When specific actions occur, such as changes in data or
user actions services generate events.

e Event consumption - To keep up with appropriate events, services subscribe
to and process published events, allowing them to react to changes in real
time.

When multiple microservices communicate through event-driven architecture (like
in the diagram below), each service pulls data from and writes data to a central,
shared message queue. This provides a flexible, scalable communication model with
loose coupling.

https://bit.ly/3WGwvaF

Microservice

#2
Publish /

—> Publish

Message queue J

Microservice —

#

Subscribe

Once you've chosen the right communication pattern for your microservices, you
need to settle on a communication protocol that fits the pattern.

Protocols and their roles

Protocols define the rules for data exchange and ensure interoperability between
services. The most commmon ones used for inter-service communication are:

Synchronous communication protocols
° MLTPS - Commonly used with REST for straightforward web
communication.
e Protobuf (Protocol Buffers) - Used with gRPC for efficient binary serialization.

Asynchronous communication protocols
e AMQP (Advanced Message Queuing Protocol) - Often used with message
queues for reliable message delivery.

https://en.wikipedia.org/wiki/HTTP
https://en.wikipedia.org/wiki/HTTPS
https://protobuf.dev/
http://www.amqp.org/
https://bit.ly/3WGwvaF

Event driven protocols
e Pub/sub - Used as a simple communication protocol for microservices.

Handling failure scenarios in communication

Simply picking the right communication isn’'t enough to ensure robust inter-service
communication. Without proper fault tolerance, communication between services is
a weak point in the system, leading to cascading failures.

The following four strategies will help your engineering team build resilience into your

inter-service communication.

2
| Retries Circuit breakers ’I‘nme.out Bulkheads
L settings

Retries

Retries is a simple strategy that automatically attempts to resend failed requests
after a brief delay. This helps mitigate transient issues, such as temporary network
glitches or brief service disruptions.

How it works

e When arequest fails, the service waits for a predefined interval before retrying
the request.

e The number of retry attempts and the delay between attempts can be
configured based on the specific use case.

https://cloud.google.com/pubsub/docs/overview
https://bit.ly/3WGwvaF

e Exponential backoff can be used to gradually increase the delay between
retries, reducing the load on the failing service.

When dialed in, retries smooth out temporary disruptions, so users aren’t aware of
these small faults. It also frees your team from constantly having to manually
intervene with requests by increasing the chance of success for every request.

Circuit breakers

Circuit breakers monitor the health of services and temporarily degrade or disable
communication with services that are experiencing failures. This prevents one
service outage from causing a chain reaction of cascading failures throughout the
system.

How it works

e The circuit breaker has three states: closed, open, and half-open.
o When the service is healthy the breaker stays closed so that requests
flow normally.
o When a failure is detected in a service, the breaker opens. This blocks
requests, allowing the service time to recover.
o After stipulations are met, the breaker will half-open, letting a limited
number of requests through to test if the service has recovered.
e If the service responds successfully during the half-open state, the circuit
breaker closes, and normal traffic resumes. If failures continue, the circuit
breaker reopens.

Excessive pressure can quickly overwhelm a service, leading to cascading faults.
Circuit breakers prevent services from being overwhelmed, allowing them to recover
by relieving load pressure. And, if they fail, circuit breakers increase the stability of a
system by isolating these failures and rerouting traffic.

https://bit.ly/3WGwvaF

Timeout settings

Timeout settings define the maximum interval a service will wait for a response from
another service before considering the request failed. With proper timeout
configuration, you can mitigate prolonged delays as services wait too long for a
response and the resource exhaustion that comes from that.

How it works

e Each service call is assigned a timeout period.
e If the response is not received within the timeout period, the request is
aborted, and an error is returned.

Timeout prevents services from waiting indefinitely for responses, allowing the
system to keep running without the drag of open requests piling up. It also helps you
identify and handle slow services promptly.

Bulkheads

Bulkheads partition a system into isolated sections to prevent failures in one part
from affecting the larger system. This is similar to compartmentalization in ship
design, where individual sections can be sealed off to contain damage.

How it works

e Resources (such as threads, memory, or database connections) are divided
into separate pools, each of which is dedicated to specific services or
functions.

e This allows the majority of the system to continue to operate normally even if
one pool becomes exhausted due to a failure.

By partitioning your system into well-designed bulkheads, you limit the impact of
failures, ensuring the rest of your critical services remain available even when others

are experiencing failures.

https://bit.ly/3WGwvaF

With the right communication patterns and robust strategies to handle failure
systems, even the largest apps, like Spotify, can build in resilience.

How Spotify built resilience with an event-driven
architecture

When Spotify transitioned to a microservices-based system, they adopted an
event-driven architecture using Apache Kafka for inter-service coommunication. This
gave Spotify the ability to build loose coupling, scalability, and fault tolerance into
their microservices ecosystem.

Asynchronous, event-driven architecture

Spotify chose Kafka so their services could both publish and consume events
asynchronously. This decoupled the services from each other, allowing each to
evolve independently so Spotify could scale services as needed. Kafka's
fault-tolerant and scalable design ensured that events were reliably delivered and
processed, even in the face of failures or high loads.

To simplify integration, Spotify developed their own tooling and frameworks. They
established guidelines and best practices for event design, schema evolution, and
error handling to ensure consistent and reliable communication across services. This
allowed engineering teams to build based on business logic rather than low-level
communication details.

Building in resilience

Additionally, Spotify implemented advanced patterns like Event Sourcing and CQRS
(Command Query Responsibility Segregation) to enhance the resilience and
scalability of their system. While event sourcing allowed them to capture all state
changes as a sequence of events, providing an audit trail and enabling event replay.

https://bit.ly/3WGwvaF

CQRS separated read and write operations, optimizing for different access patterns
and scalability requirements.

Scaling and evolving a popular app

As we see, Spotify successfully transitioned to a microservices-based system that
could scale and evolve independently, while maintaining loose coupling and fault
tolerance. This approach allowed them to handle their app’s massive scale and
complexity — a topic we're going to touch on a little later in the ebook.

https://bit.ly/3WGwvaF

Chapter 4

Service discovery and load
balancing

https://bit.ly/3WGwvaF

Static service discovery mechanisms, such as hardcoding service locations or using
load balancers, fail when tasked with navigating the complexities of a microservices
architecture.

Service discovery mechanisms allow microservices to locate and connect to the
appropriate instances of other services that they need to communicate with. When
tasked with locating and connecting instances across microservices, these systems
become overwhelmingly complex and difficult to manage. And because they are
built to communicate within a monolithic environment, they encourage tight
coupling across your architecture creating a ‘distributed monolith’, as discussed in
the first chapter of this series.

Dynamic service discovery, like service registries and service meshes, are better
solutions for microservices architecture. They allow your distributed system to stay
flexible through loose coupling because locations don't need to be hardcoded for
services to discover each other. They also built in resilience with the ability to reroute
traffic over failed instances.

We're going to dive into how each of the above service discoveries work so you can
decide on the best option for your architecture.

What is a service registry?

A service registry is a centralized database that maintains the instances, and
network locations of all available services, and then makes them available for
application-level communication. Services first register with the database to signal
they are available and then query the registry to find any instances they need.

https://bit.ly/3WGwvaF

How does a service registry work?

1. Services register themselves when they come online, making them
discoverable.

2. When a service needs to discover and connect with an appropriate instance, it
queries the registry to connect with the right instance.

3. As services come and go, the registry is updated to reflect the changing
environment to ensure a client receives information that connects it with
healthy instances.

Key features of a service registry

RegisFry & Discovery Loao‘(Health Checks Metadata
deregistry balancing storage

Registry and deregistry

When a service instance starts, it registers its network location (IP address and port)
with the service registry. When a service instance shuts down or becomes unhealthy
(i.e. non-responsive), it deregisters itself from the service registry so that other
services don’t attempt to connect to it.

Discovery
Service registries allow for dynamic discovery of service endpoints without
hardcoding network locations. Instead of having a set network location where

https://bit.ly/3WGwvaF

instances can be found, services query the registry to find the instances of another

service.

Load balancing

Most service registries work with load balancers. They distribute traffic evenly by
splitting traffic across multiple service instances. This helps enhance both
performance and fault tolerance.

Health Checks

Many service registries include built-in health check mechanisms, typically a health
check URL. The registry then periodically verifies the health of registered service
instances by querying the URL. If an unhealthy instance is found, it's deregistered.

Metadata storage

Aside from registering services for discovery, registries can also store metadata
about registered services. This data can include version numbers, configuration
settings, and custom attributes which it uses to route requests based on specific
criteria or provide detailed information for monitoring and debugging.

Commonly, service registries can be implemented using network-accessible
key-value stores. Now let’s talk about examples of service registries:

e A distributed coordination service, Apache Zookeeper provides robust features
for service discovery and configuration management.

e Consulis a popular HashiCorp tool which offers service discovery, health
checking, and a distributed key-value store.

e Developed by CoreOS (now part of Red Hat), Etcd is a distributed key-value
store. It's often used for storing configuration data and service discovery
information.

https://zookeeper.apache.org/
https://www.consul.io/
https://etcd.io/
https://bit.ly/3WGwvaF

Whatis a service mesh?

A service mesh takes service discovery a step further by implementing a dedicated
infrastructure layer for service-to-service communication. This frees individual
services from having to implement the complex functionalities of service discovery.

How does a service mesh work?

Typically, service meshes are implemented as a network of lightweight proxies (e.g.
sidecars) deployed alongside each service instance. These proxies handle service
discovery, load balancing, encryption, and other cross-cutting concerns.

Key features of a service mesh

Traffic Polic
I : ' ob ik tf
[Manasement] Secur tv [o tvj
Service " Integra‘tion and
Discovery and Resilience Ex‘tensibihty
Regis‘try

Traffic management

A service mesh can help manage traffic through your distributed systems through a
combination of load balancing, traffic shaping and splitting, and routing. It prevents
bottlenecks in the system by distributing incoming requests across multiple service

instances.

https://bit.ly/3WGwvaF

Service meshes also control traffic between services through rate limiting and
throttling to shape traffic and smooth out spikes. In the same way, service meshes
can split traffic between service versions, allowing for canary releases, A/B testing,
and gradual rollouts of new features. Finally, service meshes typically offer advanced
routing capabilities including request-based routing, header-based routing, and URL
path-based routing. This allows for granular control over how traffic is directed
between services.

Security

With various measures to provide enhanced security in microservices architectures,
service meshes help your team build a secure system. Mutual TLS (mTLS) secures
communication between services by encrypting traffic between endpoints. They also
support authentication and authorization by offering fine-grained control policies.

Properly set up, these authorizations restrict services so only those authorized can
access specific services and endpoints. The ability to manage service identities and
certificates simplifies the implementation of secure service-to-service

communication.

Observability

Typically, meshes include the automatic collection of metrics related to service
communication, including the four golden signals (traffic, latencies, saturation, and
error rates). This gives your team insights into the health and performance of
services. They also integrate with distributed tracing systems (which we'll cover in
our next chapter) and gather and aggregate logs of service interactions. This
increased visibility gives developers more visibility in the system so they can
effectively monitor and troubleshoot systems to enhance performance.

Resilience
A service mesh offers greater flexibility than static systems, building resilience into
your architecture. One of the key tools meshes have is the ability to implement circuit

breakers. Teams are also able to configure automatic retries to set timeouts to

handle transient failures and ensure timely responses. A mesh also allows your team

https://bit.ly/3WGwvaF

to control the rate of incoming requests to prevent services from getting
overwhelmed with requests.

Policy enforcement

Service policies are built into a service mesh, allowing your team to define and
enforce traffic management policies, security and resource usage. Your team can
also control access with role-based control (RBAC). This allows you to regulate who
can perform specific actions and on which services they are able to do so.

Service discovery and registry

Dynamic service discovery automatically discovers services and their instances. This
ensures the mesh is constantly up-to-date and able to route traffic to the right
instance. The service registration of a mesh allows dynamic scaling and seamless

service discovery, even in a dynamic microservices architecture.

Integration and extensibility

Integration with existing tools is simple with service meshes, including building in
observability, security, and management tools This gives your team the ability to
seamlessly add your service mesh to existing infrastructures. They also offer
extensible frameworks that allow operators to add custom plugins and extend their
capabilities to meet specific requirements.

Popular service meshes to check out:
e A widely used service mesh, Istio offers robust traffic management, security,
and observability features.
e Linkerd is a lightweight service mesh focused on simplicity, performance, and
security.
e Part of HashiCorp Consul, Consul Connect provides service discovery,

configuration, and secure service-to-service communication.

https://www.cerbos.dev/features-benefits-and-use-cases/rbac
https://istio.io/
https://linkerd.io/
https://www.consul.io/docs/connect
https://bit.ly/3WGwvaF

Load balancing in complex microservices
architectures

Both service registries and service meshes have built-in load balancing aspects to
distribute incoming traffic across multiple instances of a service. This way, they
ensure optimal resource utilization, guarantee high availability, and generally
improve performance. Here's a helpful explanation of load balancing from Software
Engineering StackExchange:

“Load balancing a service allows clients to be decoupled from the scalability
of those other services. All clients have a single URL to interact with. Cloud
environments have automated tools that can add and remove nodes behind
a load balancer. This helps enable the scalability promised with micro

services.

If load balancing decouples clients from the scalability of a service, then
service discovery decouples clients from knowing which URLs can be used to
communicate with the other services. Think of service discovery as an index
of all the microservices in your ecosystem. The meta data about each service
should return the URL of the load balancer in front of a service.”

There are supplementary tools you can use to increase the resiliency of your system
and improve performance. NGINX, HAProxy, and cloud-based load balancers (e.g.

AWS Elastic Load Balancing, Google Cloud Load Boloncing), help distribute traffic
across service instances based on various algorithms like round-robin, least

connections, or weighted distribution.

These tools can implement load balancing at different levels, such as the network
level (L4) or the application level (L7).

e L4load balancing operates at the transport layer and distributes traffic based
on IP addresses and ports.

https://softwareengineering.stackexchange.com/questions/440242/service-discovery-and-load-balancers-with-high-frequency-health-checks
https://www.nginx.com/
http://www.haproxy.org/
https://aws.amazon.com/elasticloadbalancing/
https://cloud.google.com/load-balancing
https://bit.ly/3WGwvaF

e L7load balancing operates at the application layer and can make routing
decisions based on the content of the request, such as URLs or headers.

Now that we've covered the technical concepts, let’s dive into an interesting example
from Airbnb.

Airbnb builds in dynamic service discovery and load

balancing with SmartStack

When Airbnb moved to microservices, their static service discovery solutions didn't
work anymore. So, they developed proprietary software to manage service discovery,
service registration and load balancing in their complex microservices architecture,
which they called SmartStack.

Supported by observability and monitoring tools, SmartStack allowed Airbnb to
create an effective service discover system in their microservices environment.

Registration, discovery and load balancing with SmartStack

Airbnb’s development team decided to break the three services down into two
distinct components, which they called nerve and synapse.

e Nerve is a service registration daemon that registers services with a
distributed key-value store, much like Zookeeper. It periodically checks the
health of the services and updates their registration status to maintain a clean
registration of all functioning instances.

e Synapse is a service discovery and load-balancing component that acts as a
transparent proxy for service communication. It subscribes to the key-value
store to discover the available service instances and routes traffic to them
based on configurable load-balancing algorithms.

https://medium.com/airbnb-engineering/smartstack-service-discovery-in-the-cloud-4b8a080de619
https://bit.ly/3WGwvaF

These components integrate with Airbnb’s infrastructure automation and
deployment tools. They automatically register services as they are deployed to
ensure all healthy service instances are discoverable. SmartStack also provides
automatic failover, so if the system is compromised it re-routes all data to a standby
system.

Integrating flexibility & resilience

SmartStack allowed services to discover and communicate without the need for
manual configuration or hardcoded service locations, freeing the team to scale their
services independently. Load balancing and automatic failover built resilience into
the system by optimizing resource allocation (without overwhelming instances) and
ensuring failures were handled gracefully.

Real-time insight

Airbnb integrated their observability and monitoring tools, such as Datadog and
Grafana, with SmartStack to gain real-time visibility into the health and performance

of their services. This gave them a better understanding of service dependencies,
traffic patterns, and potential bottlenecks. Armed with this in-depth knowledge,
Airbnb proactively identified and resolved issues before they caused chaos in the
system.

With SmartStack, Airbnb created a service discovery system that could successfully
manage the complexities of their microservices architecture. It improved reliability,
enabled a structure that could scale independently and, in the end, delivered a
seamless user experience to millions of users worldwide.

https://www.datadoghq.com/
https://grafana.com/
https://bit.ly/3WGwvaF

Chapter 5

Monitoring and observability

https://bit.ly/3WGwvaF

In a microservices environment, multiple services run concurrently, creating a
complex network of processes. That makes it difficult to get a clear view of the overall
health, performance, and behaviour of the application. And it often renders obsolete
many traditional tools used in monolithic architectures.

That's why effective monitoring and observability tools are critical for understanding
what is happening at each layer of your application.

e Observability tools provide insights into the internal state of the system. This
makes it easier to understand and debug the complex interactions between
services.

e Monitoring tools collect and analyze metrics, logs, and traces from various
services. This gives you critical data you can use to identify potential issues,
bottlenecks, and anomalies

Challenges of implementing monitoring and
observability in microservices architectures

There are three major challenges companies have to overcome before achieving
effective monitoring and observability.

1. Interaction of data silos. Treating each microservice separately when
implementing monitoring and observability solutions creates “data silos”. These silos
are easy to understand in isolation, without fully understanding how they interact as
one. This can lead to difficulty when debugging or understanding the root cause of
problems.

2. Scalability. As your microservices architecture scales, the complexity of
monitoring and observability grows with it. So monitoring everything with the same
tools you were using for a single monolith quickly becomes unmanageable.

https://bit.ly/3WGwvaF

3. Lack of standard tools. One of the benefits of microservices is that different teams
can choose the data storage system that makes the most sense for their
microservice (as we covered in chapter 2, Data management and consistency). But,
if you don’t have a standard for monitoring and observability, tying siloed insights
together to gain insights on the system as a whole is challenging.

The foundation of monitoring and observability

To achieve effective monitoring and observability in a microservices environment,
start with the three pillars of observability: metrics, logging, and tracing. Once the
basics are established, you can move into enrichment, correlation, arbitrary
querying, and more.

Logg‘.y\g \l 'wl TY'QC;V\S ‘:

B . 1 : PN |

(&) * elastic AR :
DATADOG ! Telemetry :

s
Grafana @ influxdata

, ~

Metrics

Metrics provide quantitative measurements of various aspects of the system, such
as response times, error rates, resource utilization, and throughput. By collecting and
analyzing these metrics, you can assess the performance and health of individual
services and the system as a whole.

Prometheus, Grafang, InfluxDB, and Datadog are all popular tools for collecting and

visualizing metrics. They help define and collect metrics from services, set up alerts
and thresholds, and create dashboards for real-time monitoring.

https://prometheus.io/
https://grafana.com/
https://www.influxdata.com/
https://www.datadoghq.com/
https://bit.ly/3WGwvaF

Logging

Capturing and centralizing log messages generated by services during their
execution provides valuable information about the behaviour of services, including
error messages, debug information, and important events. This data can be saved to
keep a record of performance or used as input for analytics tooling.

Centralized logging solutions like the ELK Stack (Elasticsearch, Logstash, and Kibana)
or Eluentd help aggregate and analyze logs across microservice architectures. They
enable you to search, filter, and visualize log data, making it easier to troubleshoot
issues and understand the flow of requests through the system.

Tracing

Tracing involves capturing the end-to-end flow of requests as they traverse across
multiple services. Tracing gives your team a better understanding of interactions
between services so they can identify performance bottlenecks and pinpoint the root

cause of issues.

Distributed tracing tools like Jaeger, Zipkin, and OpenTelemetry allow you to capture
the timing and metadata of requests as they flow through the system. This provides
a detailed view of the request lifecycle.

Metrics, logging, and tracing tools provide comprehensive visibility into your
microservices system. When you implement these tools you are better able to
monitor the health and performance of services, detect anomalies, and troubleshoot
issues efficiently. Now let’s talk about some examples.

https://www.elastic.co/
https://www.elastic.co/logstash
https://www.elastic.co/kibana
https://www.fluentd.org/
https://www.jaegertracing.io/
https://zipkin.io/
https://opentelemetry.io/
https://bit.ly/3WGwvaF

Uber maintains observability through growth

Uber experienced significant growth in their microservices architecture. This led to
challenges in maintaining clear monitoring and observability. So, Uber focussed on
building up the three pillars of monitoring and observability by implementing a
robust stack of various open-source tools. This gave them a better understanding of
what was happening across their app.

Metrics

For metrics, Uber used Prometheus to collect and store data and Grafana to visualize
the results. Prometheus, a time-series database and monitoring system, was chosen
for its flexible query language. This flexibility allowed Uber to define custom metrics
relevant to their business. Grafana was used to create interactive dashboards and
alerts based on the collected metrics.

Logging

Uber used Apache Kafka and Elasticsearch to build a centralized logging
infrastructure that could handle their growth. Services published their logs to Kafka
topics, which acted as a buffering layer. The logs were then consumed by a log
aggregation pipeline that processed, transformed, and stored them in Elasticsearch.
To make the data easier to search and more digestible, Uber used Kibana to visualize

the log data.

Tracing

For distributed tracing, Uber initially used Zipkin but later transitioned to Jaeger, an
open-source tracing system. Jaeger allowed Uber to instrument their services to
generate trace data and provided a web Ul for visualizing and analyzing traces. It
helped them understand the flow of requests through their microservices
architecture, identify performance bottlenecks, and debug issues.

https://prometheus.io/
https://grafana.com/
https://kafka.apache.org/
https://www.elastic.co/
https://www.elastic.co/kibana
https://zipkin.io/
https://www.jaegertracing.io/
https://bit.ly/3WGwvaF

Standardizing metrics, logging, and tracing with custom tools

With a variety of tools recording data on how the architecture acted at multiple
levels, Uber had to bring this information together to get observability in architecture

as a whole.

They decided to develop custom tools and dashboards to standardize metrics, logs
and traces across the system. This gave their team a holistic view of their system's
health and performance. They can correlate data from different sources and gain

insights into the behavior of their microservices.

Building up by focusing on the foundation

Uber re-gained deep visibility into their microservices architecture by revisiting the
three pillars of observability and monitoring. With this focus on re-working the
foundation of visibility, they are now able to proactively identify and resolve issues,

optimize performance, and ensure a reliable and seamless experience for their users.

https://bit.ly/3WGwvaF

Chapter 6

Testing and deployment strategies

https://bit.ly/3WGwvaF

The mesh of simultaneously communicating services creates unique challenges
when testing and deploying in microservices. Not only do you have to ensure that
each service is functioning internally, but that it's interacting effectively with other
services. And then, you have to make sure the whole web of microservices is
functioning together as a system.

With multiple layers acting and interacting simultaneously, you need strong testing
and deployment strategies to maintain the quality and stability of microservices.
That's what we will talk about in this chapter.

Testing strategies

You can't test all layers of a microservices architecture with a single type of test. Your
team has to test your microservices at four different levels to ensure it is stable at
each layer of functionality. You start testing at the granular, or unit level and work
your way up to testing the whole system.

~

,
-
-

C
e
o
o
"
<t
5
<«

9 \ S S - ’ 4 /

https://bit.ly/3WGwvaF

Unit testing

Unit testing in microservices is fundamentally the same as in monoliths. Your team
tests individual components, or services in isolation to make sure they meet
specified requirements. Frameworks such as JUnit, NUnit, and Mocha are popular
choices in their specific language spaces. The main difference with microservices is
that with microservices you're dealing with multiple frameworks within your app. So,
you'll have to use different testing stacks for each microservice based on the
technology used to create it.

Contract testing

Once you've ensured units are working well in isolation, you can begin to test how
they are interacting. Contract testing is a constrained version of system testing.
Focusing on only two units, consumer and provider, contract testing ensures that
both have a shared understanding of the API contract. In other words, the consumer
can check for aspects like response format, status codes, etc., while the producer
can check that its response is in accordance with the agreed contract. Tools like
Pact, Spring Cloud Contract, and Swagger can be used for contract testing.

Integration testing

At the next level up, you'll have to test the interaction and communication in the
system as a whole. During integration testing, you'll ensure that each of those units,
which you have tested and shown to work effectively in isolation, are communicating
effectively with other units to create a cohesive system. Tools like Postman, SoapUl,
and REST-assured can be used for integration testing of RESTful APIs, for example.

End-to-end testing

Finally, end-to-end testing validates the entire system from the user's perspective.
Unlike integration testing, which validates how microservices work together, E2E tests

https://junit.org/
https://nunit.org/
https://mochajs.org/
https://pact.io/
https://spring.io/projects/spring-cloud-contract
https://swagger.io/
https://www.postman.com/
https://www.soapui.org/
https://rest-assured.io/
https://bit.ly/3WGwvaF

execute the entire set of calls involved in any user action, testing the end result to
validate that the full feature is working as expected to fulfill business requirements.
Tools like Selenium, Cypress, and Cucumber can be used for end-to-end testing.

In a dynamic system like microservices, you should be continuously running tests to
make sure issues don't creep in through updates or patches. Practices like
Continuous Integration (Cl) and Continuous Testing automate the testing process
and catch issues early in the development cycle.

Deployment strategies

When your team is rolling out your new microservices structure, they're not just
rolling out a single project. They're rolling out multiple independent services, each
one dependent on the others. That complexity requires a careful,
well-thought-through deployment process to minimize problems and the potential
knock-on effects throughout the system.

The right deployment strategies help you do just that. Below are four effective
approaches to consider for a smoother rollout.

Blue-green deployment

In blue-green deployment, you run two identical production environments, i.e. "blue”
and "green’, during updates. One of these environments, in this case blue, runs the
old version while you deploy the new version of your microservices on green. During
the update, all traffic is directed to the stable (blue) environment. Once the green
environment (i.e. the updated version) is tested and validated, you switch traffic over
to it. This approach allows for quick rollbacks in case of issues and ensures that there
is no downtime during deployment.

https://www.selenium.dev/
https://www.cypress.io/
https://cucumber.io/
https://bit.ly/3WGwvaF

Canary deployment

With canary deployment, you gradually roll out a new version of a microservice to a
small subset of users or servers. The old version runs alongside the new version (the
canary) while traffic is diverted to the canary subset by subset. If the canary
performs well, the rollout continues until all traffic is shifted to the new version. If there
is an issue, you can roll back the update by switching all users back to the old
version. This strategy allows you to test the new version in a production environment
with real traffic, without risking all users.

Rolling update

Rolling updates are performed in batches, where a portion of the instances are
updated while the remaining instances continue to serve traffic. Once the updated
instances are stable, the next batch is updated. This process continues until all
instances are updated. This system minimizes downtime and allows for a quick
rollback in case a problem is found, so you can minimize the number of users
affected by it.

Serverless deployment

Serverless deployment uses serverless platforms like AWS Lambddq, Azure Functions,
or Google Cloud Functions to deploy and run functions or small units of code, which
can be used to implement microservices. Essentially, this splits the microservice into
smaller, individual parts. Serverless platforms abstract away infrastructure
management and automatically scale these functions based on demand. This
approach simplifies deployment and allows for granular scaling of individual
functions, which can be orchestrated to form a microservices architecture.

Every app needs to be continually updated to stay healthy and up-to-date. So,
organizations often adopt Continuous Deployment (CD) practices to streamline the

https://aws.amazon.com/lambda/
https://azure.microsoft.com/en-us/services/functions/
https://cloud.google.com/functions
https://bit.ly/3WGwvaF

deployment process. CD pipelines automate the build, testing, and deployment
steps to make frequent and reliable releases easier.

Ensuring durable deployment with rigorous testing -
Netflix's testing and deployment strategy

When Netflix rolled out their microservices architecture, they had to completely
change how they updated the app. In response to the change, they developed a
suite of tools and practices they could use to test and deploy their updates without
interrupting service to their customers

Netflix's testing & stress testing strategy

Netflix had to develop new testing strategies to make sure they understood what was
happening at all levels of their app, including unit testing, integration testing, and
end-to-end testing. They chose Junit, Mockito, and Spock to test at the unit level and

REST-assured for integration testing of their RESTful APIs.

Netflix also chose to stress test each microservice through a process called Test
Annihilation. Essentially, what they do is purposefully inject failures into their
microservices during testing to see how the update deals with the faults. This helps
them ensure the resilience and fault tolerance of their microservices.

Deploying updates

Netflix pioneered the use of Canary Deployment and Red/Black Deployment (similar

to Blue-Green Deployment). By using a combination of strategies, they were able to
ensure continuous service to their subscribers. In the same way, they developed
Spinnaker, an open-source, multi-cloud continuous delivery platform, to automate
their deployment pipelines. Spinnaker allows Netflix to safely and efficiently deploy
microservices across diverse regions and cloud providers.

https://junit.org/
https://site.mockito.org/
http://spockframework.org/
https://rest-assured.io/
https://netflixtechblog.com/test-annihilation-at-netflix-c97f8ec87170
https://netflixtechblog.com/test-annihilation-at-netflix-c97f8ec87170
https://netflixtechblog.com/deploying-the-netflix-api-79b6176cc3f0
https://netflixtechblog.com/project-nimble-region-evacuation-reimagined-d0d0568254d4
https://spinnaker.io/
https://bit.ly/3WGwvaF

Planning for the unexpected

Before any update is deployed, Netflix stress tests each microservice again with
Chaos Engineering practices. They developed the tools Chaos Monkey and Chaos

Kong to simulate failures and disruptions in their infrastructure so they could see how
their updates dealt with unexpected scenarios and failures. This gives them the
ability to proactively build resilience into their architecture, ensuring that their
microservices can handle unexpected scenarios.

Ready to scale reliably

The massive scale of Netflix's reach requires testing to failure before risking the next
update. To do that, Netflix adopted comprehensive testing strategies, automated
deployment pipelines, and chaos engineering practices. This way, Netflix has built a
highly reliable and scalable microservices architecture that can handle the massive
scale and complexity of their streaming service.

https://netflixtechblog.com/the-netflix-simian-army-16e57fbab116
https://netflix.github.io/chaosmonkey/
https://netflixtechblog.com/chaos-engineering-upgraded-878d341f15fa
https://netflixtechblog.com/chaos-engineering-upgraded-878d341f15fa
https://bit.ly/3WGwvaF

Chapter 7

Security and access control

https://bit.ly/3WGwvaF

As your team decomposes your monolith over a distributed network of constantly
communicating microservices, it creates an increased attack surface. If your security
isn't enhanced to deal with these new vulnerabilities, it leaves your system more
exposed than it was as a monolith.

That's why it's essential that your team understands the potential vulnerabilities of a
microservices architecture and knows how to safeguard against them.

Potential security vulnerabilities in microservice
architectures

Flexibility is one of the benefits of using microservices. However, if not done correctly,
this flexibility can result in inconsistencies which create vulnerabilities. There are four
main aspects where these vulnerabilities show up.

security propagation communication

'8 Y S
| Decentralized ‘ [Token J Service-to-service

Decentralized security

In a monolith architecture, all of the security-related logic resides inside the same
project and codebase. In a microservice context, however, your security can’t be so
simple. You will have to replicate and tailor your chosen security system to each
service. If this isn't done properly, it opens the door to security issues down the line.

https://bit.ly/3WGwvaF

Token propagation

A common authentication technique for microservices is token-based
authentication, where a token is issued to a user or another service during
authentication. Because they interact with a variety of databases and security
systems, they are more susceptible to compromise.

Security policies

Each microservice in your architecture has potentially been developed and
maintained by different teams. If all teams are equally concerned with security, this
isn't a problem. However, if even one team is inconsistent in the implementation of
security policies and controls, it creates a vulnerability that can be used to access
the whole system.

Service-to-service communication

Microservices are constantly communicating with each other. To keep this
communication secure, your team needs to make sure that each microservice is
authenticated and authorized when communicating with others. Improper
authentication and authorization create vulnerabilities in your security that can be
utilised to compromise the system.

Protecting your microservices architecture

There is no simple, band-aid solution that will secure every vulnerability listed above.
However, by following best practices your team can design your microservices
architecture to lower their impact on your microservices architecture.

We'll cover the four most important best practices below

https://bit.ly/3WGwvaF

(72
®
N
<
-
®
I
5
=
Q
9
o
®
3
9

Authentication and authorization

Authentication verifies the identity of a user or service, validating they are who they

say they are. Authorization determines what actions or resources they are allowed to
access. To ensure users and services dre properly authenticated and only allowed to
access the resources they're authorized for, microservice architects often use
token-based authentication mechanisms like JSON Web Tokens (JWT) or OAuth 2.0.

In token-based authentication, users/services are issued a token after they are
successfully authenticated by the system. This token contains a variety of data,
including the user’s identity and their permissions and is included in every request
made by the user/service. This allows the receiving system to authenticate the user
at each step and authorize (or deny) access to protected resources.

Spring Security, Microsoft Entra ID, and Cerbos are all able to implement token-based

authentication and authorization in your microservices architecture.

Secure commuhnication

Microservices are heavily reliant on communication across servers and storage
types, so secure communication channels are essential for the integrity of your
security system. Transport Layer Security (TLS) and mutual TLS (mTLS) are both
effective ways to secure communication. They can (and should be) used in unison to

maximise your security.

https://www.cerbos.dev/blog/authentication-vs-authorization
https://jwt.io/
https://oauth.net/2/
https://spring.io/projects/spring-security
https://www.cerbos.dev/blog/building-secure-applications-key-insights-on-authentication-and-authorization-from-cerbos-and-microsoft-entra
https://cerbos.dev/
https://bit.ly/3WGwvaF

TLS encrypts communication channels to protect data from eavesdropping and
tampering with authentication from the client. Mutual TLS authentication then adds
an additional layer of security as it requires both the client and the server to
authenticate each other.

API Gateway and security

An APl Gateway acts as a single access point for external clients, limiting the routes
into the system to give you more control over your traffic. Besides limiting access to
one portal, an APl Gateway can also request authentication, validate tokens, control
access and even provide rate limiting. It can also act as a reverse proxy, hiding the
internal microservices architecture to provide an additional layer of security.

Kong, Apigee, and Amazon API Gateway can all be used to implement APl Gateways
in your microservices architecture.

Zero Trust security

Zero Trust is a security framework based on the principle "never trust; always verify".
Services that use the system assume no implicit trust for any entity, whether inside or
outside the network. Instead, it requires authentication and authorization with every
request.

When users/services are authenticated, access is only granted based on the
principle of least privilege. That means users and services only have the necessary
permissions to perform their tasks. This helps to minimize the impact of a potential
security breach.

You can implement a Zero Trust framework using Mutual TLS (mTLS) for
authentication, then layer in Cerbos for the fine-grained authorization, Role-Based
Access Control (RBAC), and Attribute-Based Access Control (ABAC) you'll need to
enforce access policies.

https://konghq.com/
https://cloud.google.com/apigee
https://aws.amazon.com/api-gateway/
https://www.cerbos.dev/blog/zero-trust-authorization
https://www.cerbos.dev/blog/coarse-grained-vs-fine-grained-access-control
https://www.cerbos.dev/blog/rbac-vs-abac
https://www.cerbos.dev/blog/rbac-vs-abac
https://www.cerbos.dev/blog/rbac-vs-abac
https://bit.ly/3WGwvaF

Though it can be quite complex, the tools/practices above can help you ensure your

microservices architecture remains secure—which is exactly what Netflix did.

The systems and tools Netflix used to ensure security
in their microservices

When Netflix decomposed their monolith in favour of a microservices architecture
(which we covered in chapter 1), ensuring the continued security of their app was
absolutely essential. So, they adopted a Zero Trust security model and then
implemented both in-house-developed and off-the-shelf software to ensure all
traffic was authenticated and authorized properly.

Minimizing unwanted access with a zero-trust model

One of the biggest steps Netflix took to ensure security in their system was to
embrace a zero-trust model. To enforce the principle of least privilege, they use
mechanisms like Open Policy Agent (OPA) so they can define and enforce access
policies at the microservice level. They also took a Role-Based Access Control
approach to managing permissions and accessing rights. So each user and service
is assigned specific roles, and access to resources is granted based on these roles.

Taking a closer look at authentication and authorization

Netflix chose to back up their zero-trust approach to authorization with a
token-based system. They chose Stethoscope to handle user authentication and
generate JSON Web Tokens (JWTs) containing both user identity and their
permissions.

https://www.openpolicyagent.org/
https://netflixtechblog.com/netflix-stethoscope-application-health-for-the-distributed-enterprise-460f2f832b11
https://jwt.io/
https://bit.ly/3WGwvaF

Clearing communication

Netflix needed to ensure the integrity of their data in transit, so they chose to use
both TLS and mTLS. They use TLS to provide encryption for communication, while
MTLS requires mutual authentication, ensuring that both the client and the server
authenticate each other.

Developing an APl Gateway and security

With a microservices architecture as large as Netflix’'s traffic could become overly
complex, making security difficult. To bring order to the chaos, Netflix developed an
in-house API Gateway called Zuul, creating a single entry point for all client requests.
Zuul handles authentication, rate limiting, and access control for the services, as well
as performing request routing and load balancing, and distributing requests to the
appropriate microservices.

Good monkey

In addition to these security measures, Netflix decided to go above and beyond by
automating continuous monitoring of their systems. They developed Security
Monkey, an automated monitoring tool, to monitor and assess the security posture of
their infrastructure without oversight. This constant vigilance identifies
misconfigurations, policy violations, and potential security risks before they become
problems, allowing Netflix to proactively address security issues.

Netflix addressed the vulnerabilities of a microservices architecture head-on with a
comprehensive security architecture and Zero Trust principles. As a result, they have
a secure microservices ecosystem that protects their user’s data.

https://bit.ly/3WGwvaF

Chapter 8

Performance and scalability

https://bit.ly/3WGwvaF

One of the benefits of a microservices architecture is that it allows companies to
scale services independently and choose different storage and systems for each
separate service. This opens up new ways to optimize performance and allows
companies to scale services depending on each service’s individual workload
demands.

Despite this, building a scalable well-performing microservices architecture is a
major challenge when transitioning. That's because microservices are more
complex, so performance measurements and service scaling drastically differ from
what is expected in a monolith.

The challenges of optimizing a microservices
architecture

When transitioning from a monolith, you're very aware of your performance goals
and the methods you can use to achieve them. But when you transition to a
microservices architecture, those goals and tools go out the window.

After the transition, your team will have to set new best practices based on the new
architecture and find new tools to achieve them. In the following section, we’ll cover
some tools and best practices you can use to optimize your microservices
architecture.

Service communication and latency

In a microservices architecture, you have to balance granularity and communication
speed.

Overly granular architectures require microservices to communicate with many
other microservices to answer any specific request. Requested data then needs to
“hop” between all these microservices before responding to the client. Each “hop”

https://bit.ly/3WGwvaF

that the data makes on its way to generating a proper answer adds microseconds

(or more) to the communication.

This causes high latency where the communication protocol takes more time than
the actual services, which can increase the chance of failures.

If instead, you build with the sole intent of lowering latency, you’'ll end up with an
overly integrated system that isn’t flexible or scaleable. Instead, you need to balance
your need for speed with your need for a scalable architecture. When you
understand that compromise you can create goals that are attainable for your
team.

Data management and consistency

In principle, each microservice manages its own database. However, in execution,
this can lead to challenges in maintaining data consistency across microservices. If
there is too much difference between service databases, transactions across
services become cross-database transactions. This complexifies commmunication

and impacts performance.

So what is theoretically possible (different databases for different services) becomes
more trouble than it's worth in the real world. That means you have to find the
tradeoffs that work best for you to lower the complexity of transactions by using
similar databases while making the most of your microservices flexibility.

Scalability

One of the major advantages of microservices is that each can scale—or be scaled—
independently. However, managing and orchestrating the scaling of multiple
services can get overwhelmingly complex. So most microservice deployments use
auto-scaling policies and mechanisms that act based on predefined criteria. The
good news is most cloud providers offer this functionality. And, there are also
open-source solutions, including Kubernetes and Docker Swarm, available.

https://kubernetes.io/
https://docs.docker.com/engine/swarm/
https://bit.ly/3WGwvaF

To ensure these scaling mechanisms work seamlessly in practice, testing is essential.
Here is a good reminder from Sarada V., Director, Enterprise DevOps Coach at Sun
Life:

“Testing the scalability of a micro-service is very critical as it ensures that the
architecture can handle the increased workload effectively. Different
capabilities like: vertical / horizontal scaling should be tested thoroughly to
make sure that there is no impact to performance or to overall throughput.”

Deployment and DevOps complexity

Handling one deployment pipeline is difficult enough, but with microservices, each
deployment involves managing numerous, independent deployment pipelines.

So while ensuring the role out of multiple pipelines, your team has to ensure
compatibility between components and handle the orchestration of services. This
increases the complexity of your continuous integration and continuous deployment
(c1/cD) processes.

Inter-service dependencies

While it's theoretically possible to make changes in one microservice without
changing others, that's not always true in execution. Often the web of inter-service
dependencies between microservices means a change in one system requires a

change in another.

When you run into these dependencies, it requires careful versioning and intricate
backward compatibility considerations to move forward successfully.

https://www.linkedin.com/advice/0/how-can-you-evaluate-scalability-microservices
https://bit.ly/3WGwvaF

Each of these issues above can compromise your microservices architecture if not
proactively addressed. However, none of them present an intractable problem. For
every issue above there is a pattern or product that can help you solve it.

Designing scalable, high-performing microservice
architectures

The best way to mitigate the potential problems above is to design a well-balanced
microservices architecture, starting with capacity planning.

4 ,
| Capacity Planning ‘ . . . Asynchronous Database
kawo(Auto—ScalMg) > Service Gromulanttl - CQCL‘MSI - Communication - OPtiMiza‘tIon

Capacity planning and auto-scaling

Before moving to a microservice architecture, your team should have a solid
understanding of the resources required to meet their expected workload and
performance requirements. That requires your team to estimate the number of
instances, as well as the CPU, memory, and storage capacity needed by those
instances, giving you a base capacity to start with. Once you've defined your base,
your team will have to define how and when you'll scale your architectures to deal
with increased workload.

Only after you've set these guidelines in place can you bring in auto-scaling
mechanisms to automatically adjust the number of service instances. Platforms like
Kubernetes and cloud services like AWS Auto Scaling or Google Cloud Autoscaler are
great tools to help you define scaling policies and automatically scale services.

https://bit.ly/3WGwvaF

Service granularity

When you're building a new microservices architecture, there’s always a temptation
to create extremely fine-grained services to increase scalability and flexibility. But
this approach quickly hits diminishing returns as fine-grained services start to
introduce additional network overhead and latency due to increased inter-service
communication (as mentioned previously). Then if you go too far the other way, you
end up with a different set of troubles. While maintaining coarse-grained services
may reduce network overhead, it also limits scalability and agility.

Finding balance is the key. That takes careful analysis of your business domain,
performance requirements, and scalability needs so you can identify the boundaries
of each service based on its functionality, data ownership, and scalability
characteristics.

Once you understand your needs, you'll know what compromises make more sense
so you can find balance in your architecture.

Caching

Caching data allows communication-heavy microservices to improve their
performance. By storing frequently accessed data or the results of computationally
expensive operations, it reduces the load on downstream dependencies and

improves response times.
In microservices, caching can be done at multiple different levels.

e Local caching allows each service to maintain its own cache where it can
store the data it frequently accesses. Both Redis and Memcached are suitable

for creating local caches.

e Adistributed cache, which is shared across multiple services, gives all
services access to unified cache data. This makes it easier for microservices to
horizontally scale by externalizing their local cache, allowing requests to land

https://redis.io/
https://memcached.org/
https://bit.ly/3WGwvaF

on any of the copies of the service without loss of context. Tools like Redis
Cluster, Hazelcast, or Apache Ignite offer distributed caching.

e Caching can also be implemented at the HTTP level by using headers like
Cache-Control and ETag to allow clients to cache responses. Here is an
interesting opinion on it:

“Caching can reduce the HTTP request-response time to get data from
distant servers. Microservices regularly require information from other sources
(data repositories, legacy systems, etc.). Real-time calls to these sources may
involve latency. Caching helps minimize the number of backend calls made
by your application.” - Shares Sumit Bhatnagar, VP of Software Engineering.

Asynchronous communication

When microservices communicate synchronously in a large system, it can lead to
bottlenecks, making responses slower than expected.

Asynchronous communication patterns, such as message queues and event-driven
architectures, open up those bottlenecks by enabling services to decouple their
interactions and operate independently, so producers can send messages to a
message broker, and consumers can process those messages at their own pace.
This loose coupling allows for better scalability, fault tolerance, and improved

performance.

Asynchronous messaging tools like Apache Kafka, RabbitMQ, or AWS SQS allow you
to implement asynchronous communication in your architecture.

Database optimization

Microservices architectures usually rely on multiple databases or data storage types,
each chosen to complement its service. Because of this, your team can significantly
improve the responsiveness and scalability of the entire system by optimizing each
of these databases.

https://www.forbes.com/councils/forbestechcouncil/2024/07/30/caching-in-microservices-enhancing-performance-and-scalability/
https://bit.ly/3WGwvaF

Optimizing your caching, as mentioned above, is the first step your team can take to
optimize database traffic.

Database sharding can also help you optimize your databases. By partitioning data
horizontally across multiple database instances based on a specific key, sharding
allows your team to distribute the data load more evenly, improving scalability in
your architecture.

Depending on your use case, NoSQL databases, such as MongoDB, Cassandra, or
Couchbase can also provide better scalability and performance.

When you take the time to plan the compromises and requirements of microservices
architecture, you can mitigate issues around complexity, allowing it to perform and
scale to its potential. Let’s look at how Amazon did exactly that.

AWS ensures performance for millions of users

AWS supplies a huge variety of services to an ever-expanding clientele base. Despite
this complexity and traffic, their microservices architecture continues to perform at a
high level. They used a variety of techniques and technologies to maintain optimal
performance and scalability across their microservices.

Balancing speed with flexibility

AWS based their microservices architecture on DDD principles, aligning software
design with their underlying business concepts and processes. This allowed them to
balance flexibility (fine-grained services) and communication speed
(coarse-grained services) in a way that worked for their business needs.

https://bit.ly/3WGwvaF

Reduced load and improved response times with proper caching

AWS uses caching extensively to improve performance. They use ElastiCache, which
uses Redis and Memcached to provide in-memory caching services, to cache each
microservice's frequently accessed data. This improves response times by reducing
database load.

At the APl Gateway level, AWS uses an in-house product, Amazon APl Gateway
Caching. This tool allows them to cache API responses, which reduces the number of
requests hitting the backend services, improves overall performance and reduces
costs.

Building in loose coupling with asynchronous communication

AWS built their own in-house message queues and streaming platforms to ensure
their services could scale and act independently.

Amazon Simple Queue Service (SQS) is their message queueing service. It's a fully
managed service that allows nodes to send messages to SQS queues, so consumers
can process those messages asynchronously. This makes scaling services
independently easier by decoupling microservices.

Amazon developed Kinesis as a bespoke data streaming service. It uses
event-driven architecture to process and analyze data in real time.

Automatic optimization

AWS built a fully managed relational database service, named Amazon Aurora, to
maintain high-performance, scalable databases. It optimizes varying workloads on
the fly through automatic sharding, read replicas, and serverless options to handle
varying workload demands.

For NoSQL workloads, AWS uses Amazon DynamoDB, a highly scalable and
performant NoSQL database. DynamoDB offers automatic scaling, in-memory

https://bit.ly/3WGwvaF

caching, and support for global tables to ensure high-throughput data access with

low latency.
Optimizing resource use with capacity planning and

auto-scaling

Before implementing their microservice, the AWS team went through an in-depth
capacity planning process. Then, they laid out auto-scaling parameters based on
their understanding of each service’s needs. With defined scaling parameters in
place, they turned to auto-scaling to ensure each service scaled when it should.

Instead of using an off-the-shelf piece of software, they developed Amazon
CloudWatch to monitor service metrics and trigger auto-scaling actions based on
these predefined rules. They used Amazon Elastic Container Service (ECS) or Amazon
Elastic Kubernetes Service (EKS) to deploy newly scaled services. This combination of
services allows AWS to define scaling policies so services can automatically scale up

or down based on workload.

https://bit.ly/3WGwvaF

Chapter 9

Organizational and cultural shift

https://bit.ly/3WGwvaF

Transitioning to microservices is primarily a technical exercise, but it's not only
technical. It also requires a fundamental cultural shift in your team. This presents a
unique difficulty for teams. It can become a major hurdle for engineering teams with
deeply ingrained monolithic practices because the first step is challenging the old
culture to make way for the new.

Challenging the culture

In a monolithic architecture, all teams will typically work in the same codebase but
each with its own set of priorities and objectives. This creates a highly coupled code,
where one team'’s priorities and objectives directly affect another’s. As a result, the
decision-making process relies on a single decision-maker or body of
decision-makers. This leadership group has to attempt to understand and account
for the interests of every team so they don't work at cross purposes. Naturally, this
structure leads to bottlenecks, slow development cycles, and a considerable lack of

agility.

Microservices demand a more collaborative, cross-functional team culture. Teams
have to collaborate across functions, instead of in silos, to ensure the system
functions properly. This requires open communication channels and regular team
check-ins.

When teams can let go of their old, monolithic habits, they are freed to share best
practices, learn from each other's experiences, and develop a deep collective
understanding of the system as a whole.

But making this new culture work isn't simple. The team must have a foundation of
autonomy backed by accountability so they can move from doing what they're told
to making the decision to do what works best for their service. In a microservices
culture, those two words (autonomy and accountability) pack a lot of meaning.

https://bit.ly/3WGwvaF

It's worth unpacking some of that here.

Autonomy is in direct contradiction with the old centralized governance of
monolithic architecture. Instead of being constrained by centralized
decision-making processes, teams are given the freedom to make their own
decisions about the design, development, and deployment of their services.

That includes choosing the technologies, tools, and processes that best fit
their needs. Letting go of that centralized control is difficult for many team
leaders, but it's essential for microservices as it enables faster innovation and

experimentation.

Instead of having a centralized governing team who is responsible for the
consequences of decision-making, microservices architecture requires that
accountability is spread to everyone working on the project. Every team must
take ownership of the decisions they make for their services throughout the
entire lifecycle, from development to production. They are responsible for the
quality, performance, and reliability of their services, as well as addressing any
issues that may arise.

When all teams honestly take accountability for their services, it builds a sense
of responsibility and promotes a proactive approach to service management.

https://bit.ly/3WGwvaF

Successfully decentralizing

Microservices architecture
Monolithic architecture

]

)

)
J

User access

Reporting

A

/
(&

‘ ‘
/‘—9 Shopp]n3 cart
-7 C

- ’ _— ‘ Product Mngmt
. .ﬂ (F‘al/wxen‘t&
A J
—

;\JV//Z

Accountability and autonomy are the foundation, but they don’t just appear out of
nowhere, or as a result of a single meeting. These are built over time as your

leadership and your developers become more comfortable with these new
concepts.

But that doesn’t mean you just have to wait until all the pieces fall into place. There
are several steps you can take to encourage this collaborative approach:

e Assemble cross-functional teams that cover diverse skill sets and expertise
to tackle specific challenges or projects. This allows team members to share
their knowledge and skills, while also gaining exposure to new areas.

e Establish guilds that bring experts from different domains or functional areas
together. This provides a platform for knowledge sharing, experimentation,
and innovation between domains.

e Create internal communities where team members can come together to

share experiences, discuss challenges, and learn from each other.

https://bit.ly/3WGwvaF

In addition to this foundation, traditional hierarchical structures may need to be
flattened to emphasize the importance of autonomous, self-organizing teams. This
truly frees team members from traditional, monolithic decision-makers so they can
take ownership of their work, make decisions independently, and respond quickly to
changing requirements.

That requires engineering leadership to take a leap of faith and step back from
constant decision-making to focus on setting clear goals to provide guidance and
direction to teams. They must also be willing to adapt and evolve alongside the
organization, embracing the uncertainty and ambiguity that often accompanies a
significant cultural shift.

Ultimately, the key to successfully transitioning your company lies in creating an
organizational culture that values collaboration, knowledge sharing, and autonomy.
To get the most out of a microservices architecture, companies need to let go of the
old ways of working (old engineering culture).

Building a microservices culture at Amazon

Shifting the culture in any company is a difficult process. But when you're as big as
Amazon, it can seem overwhelming. So instead of simply telling developers and
leadership about the change and requiring everyone to get on board, the leadership
at Amazon came up with innovative, concrete steps they could take to change the

culture.

The first step was snack-sized.

The pizza rule

A simple rule with an interesting name, the "two-pizza team” rule stipulates that all
teams should be small enough to be fed with two pizzas. Typically, that means about
6—-8 members.

https://bit.ly/3WGwvaF

These small teams are responsible for the end-to-end development and operation
of their services. That means everything from ideation to deployment and
maintenance is the work of a single team. In this type of workflow, teams have the
freedom to choose technologies and make architectural decisions based on their
specific requirements, which allows them to move quickly and independently.

Owning your metrics

Amazon promotes a culture of ownership and accountability by using metrics and
monitoring. Teams can see how their services are doing by tracking the metrics they
are responsible for proactively addressing any issues that arise. And if they don't,
their metrics will reflect that lack of action to leadership.

Asynchronous and synchronous workflows that facilitate

collaboration

Dictating collaboration is impossible because it relies on strong relationships and
communication in teams. That's why Amazon has established mechanisms and
practices that encourage collaboration and knowledge sharing instead of simply
telling their communities to collaborate.

Amazon has long had a strong culture of writing and documentation (including
services, APls, and best practices). After decomposing their monolith, they doubled
down on this to include wikis and mailing lists where everyone can learn from each
other. They also implemented cross-team meetings to ensure communication

across the two-pizza teams.

Flattening the hierarchy

As teams proliferated, the towering hierarchy stopped working, so leadership
embraced a flatter, decentralized structure. They took a DDD approach to this new

https://bit.ly/3WGwvaF

structuring, organizing teams around business capabilities and giving them clear
ownership and accountability for their services.

Often, organizations see monolith decomposition as only a technical exercise. This
leads to failure, as teams don't have the autonomy to keep up with their services.
Don’t ignore potential cultural challenges.

https://bit.ly/3WGwvaF

Chapter10

Team collaboration and code

ownership

https://bit.ly/3WGwvaF

Team collaboration and code ownership are important in every architecture, but
when you decompose your monolith, they become essential throughout your
organization.

Microservices are typically developed and managed by multiple teams, each of
which is responsible for their own specific services or domains. These teams not only
have to collaborate to build and maintain an app, but the members of each team
have to work together without recourse to an outside judge.

This autonomy requires effective collaboration and clear code ownership for every
developer. And for those at the top, it requires a lot of trust in your teams. But that
doesn’t mean you have to sit on the sidelines hoping for a good result. When you
take the time to set up team structures that work in this new context, you position
your teams for success. That starts with re-organizing your team.

Organizing teams to excel

Much like the services they run, microservices teams are often organized around
business capabilities or domains rather than technical layers. This is known as
“vertical slicing". It allows teams to have end-to-end ownership of their services, from
development to deployment and maintenance. This builds cross-functionality into
the team and gives them the freedom to make the best choices for their particular

service.

Depending on the goals of your teams, there are a variety of ways you can choose to
vertically slice them.

e Feature teams are responsible for developing and maintaining a specific set
of features or business capabilities.

e Some companies choose to create domain-driven teams by aligning each
with specific business domains or subdomains following the principles of DDD.

https://bit.ly/3WGwvaF

e Stream-aligned teams are organized around the flow of work, such as user
journeys or data streams, allowing for end-to-end ownership and faster
delivery.

n- s -
Feature Dowain Ecas

teoms driven ! ahgned

/
teams

/

teaw\s/

These teams need to stay agile, so it's best to keep them small. The "two-pizza team”
rule, popularized by Amazon, is an effective rule of thumb to follow when putting
together teams. The two-pizza rule states that teams should be small enough to be
fed with two pizzas, typically consisting of 6—-8 members.

Giving teams ownership of their code and repositories

Each team has to own their code. That means they need control of their own code
repository that covers the team’s domain and boundaries of service. That often
means that each service has its own repository, though not necessarily. Related
services may also be grouped together in a single repository which is owned by its

respective team.

Regardless of how you define the borders, clear repository boundaries are integral to
enforcing access control, managing dependencies, and facilitating independent
deployments. This decentralized ownership structure promotes autonomy, which, as
we discussed in chapter 9, is an essential aspect of working in a microservices
architecture.

Decentralized doesn’'t mean chaotic, however. Setting a small set of foundational
standards—such as basic tech stack, coding “best practices” or project

https://bit.ly/3WGwvaF

structures—will allow developers to move between service teams if need arises. In
the end, while the teams are independent, they're all working towards releasing the
same, integrated platform, and that common goal should be reflected in how they
pursue their goals.

Facilitating communication and collaboration

Teams need to establish clear communication channels and practices to share
knowledge, coordinate efforts, and resolve dependencies. That doesn’t happen by
accident.

You can help your team develop good habits by instituting a variety of techniques,
like:

e Scheduling regular cross-team check-ins where everyone can share
updates, discuss challenges, and align on common goals.

¢ Establishing knowledge-sharing sessions around specific technical or
domain areas so teams can share best practices, learn from each other, and
maintain consistency across services.

e Encouraging teams to document knowledge, including their services, APIs,
and best practices. Wikis, knowledge bases, or shared repositories can be
effective tools for this.

Setting APl contracts and service agreements

In the same way that your teams need to communicate, your services do as well. In
microservices architectures, that means establishing clear APl contracts and service
agreements.

Well-defined expectations for inputs, outputs, and behaviour of a service's API create
a shared understanding between the service provider and consumer teams which
allows your services to collaborate easily and reduces dependencies between
teams. When API contracts inevitably need to change, the revisions must be

https://bit.ly/3WGwvaF

communicated and versioned properly to avoid breaking dependencies and

communication.

Service level agreements (SLAs) will help your team set expectations and define the
responsibilities of each team in delivering and consuming services.

Leveraging continuous integration and continuous delivery

With multiple teams across your application updating services separately, and
keeping everyone up-to-date with each node, and ensuring integration through
updates becomes an almost overwhelming task.

That's why most teams who use microservice architecture deploy some form of
Continuous integration (CI) and Continuous Delivery (CD) pipelines. These automate
the build, testing, and deployment processes, so teams can frequently integrate their
code changes, and deploy services independently, allowing for efficient
collaboration.

As every team needs the ability to work autonomously, each team should have its
own CI/CD pipeline. This way they can develop, test, and deploy their services
without worrying about what other teams are doing. Pipelines should be configured
to run automated tests, perform code quality checks, and deploy services to the
appropriate environments based on predefined criteria.

https://bit.ly/3WGwvaF

Humans are complex. So, changing team culture is often more difficult than
changing technical practices. But that doesn’'t mean it's impossible. Spotify is a great
example of a company that managed to create a lasting change in their culture
when they shifted to a microservices architecture.

Organizing cross-company communication with
Spotify

When Spotify decomposed its monolith, it also decomposed its hierarchy to create a
flatter, more collaborative team culture. This major shift offers great lessons on how
to encourage your people to change by increasing communication.

Organized in squads and tribes

While Amazon has their ‘two pizza’ rule, Spotify has its squads. Like ‘two-pizza’ teams,
squads are small. But they're also defined by more than just their size. They're
cross-functional teams that own and develop specific features or services. Each

https://bit.ly/3WGwvaF

squad has the autonomy to make their own decisions, choose their own
technologies, and deliver value independently.

These squads are then grouped into tribes based on how closely related their areas
or domains are. Tribes provide a forum for squads to come together to share
knowledge, align on best practices, and coordinate efforts so that they don't become
silos.

By creating different levels of organization, and implementing practices that bring
them together, Spotify gives each of its teams a high degree of autonomy while still
bringing them together.

Maintaining a plethora of clear ownership boundaries

Spotify uses a microservices architecture with hundreds of services, each owned by
a specific squad. Each of those squads has the freedom to choose the programming
languages, frameworks, and tools that best suit their needs as they develop and

maintain their service.

This creates a dizzying array of technologies and frameworks. All the services,
irrespective of ownership, are stored in a single repository using a monorepo
approach. But they don't all get tossed together without concern for teams or

services.

Each squad has its own dedicated folder within the monorepo to maintain clear
ownership boundaries.

Creating opportunities to meet new people and learn skills

Formally, all developers are grouped into squads and tribes at Spotify, but the groups
don’'t end there. Spotify encourages all developers to build bridges beyond their
squad/tribe with a variety of collaboration practices.

https://bit.ly/3WGwvaF

e Guilds, which are communities of interest, are open to people from all different
squads and tribes. These groups host meetings where anyone interested can
come to share knowledge and discuss specific topics. These topics could
include web development, data engineering, agile practices, etc.

e Developers can also join “chapters”, which are groups of people with similar
skills or expertise, such as front-end developers or data scientists. Chapters
provide a forum to share best practices, learn from others, and maintain
technical excellence.

e Tribes also hold regular meetings to discuss high-level goals, share updates,
and coordinate efforts among the squads within the tribe.

API contracts and service agreements

Each squad at Spotify is responsible for designing and documenting their APIs,
allowing them autonomy. These API specifications are stored alongside the code in
the squad's folder in the mono repo. Any changes to those API specifications need to
be reviewed by the relevant squads before being put into action. They are
accountable for ensuring backward compatibility and avoiding breaking changes.

However, the squads aren’t given a full blank slate. Each is required to follow
consistent guidelines and standards to ensure compatibility and a shared
understanding between them.

In the same way, Spotify defines standards for service level objectives (SLOs),
including expected performance, availability, and reliability targets. Squads are then
responsible for monitoring and meeting these SLOs.

Continuous integration and delivery

The squad’s autonomy continues through to their CI/CD pipeline. They use tools like
Jenkins, Travis Cl, and Spinnaker to automate their build, testing, and deployment
processes. This enables them to continuously integrate code changes, run
automated tests, and deploy services independently.

https://bit.ly/3WGwvaF

Code reviews and pair programming are common practices within squads to
maintain code quality, share knowledge, and foster collaboration.

As they rebuilt their architecture, Spotify also rebuilt their team organization, which is
a large part of why their migration was so successful. Through the squad mode],
Spotify has created a highly collaborative and efficient development environment
that many other companies are constantly trying to replicate across the world.

* %k %

Switching to microservices can be tricky, but if you're ready for the challenges and
plan ahead, you can increase your chances of success. The key is being open to the
cultural changes, getting different teams to work together, leveraging best practices
and tools, so your team can navigate this transition effectively. It's not going to be
simple, but stick with it and be willing to adapt as you go.

The journey to microservices takes time and you'll be learning a lot along the way,
but if you can navigate that, the benefits of this new way can really pay off.

https://bit.ly/3WGwvaF

cerbos

Authorization management solution for authoring, testing, and
deploying access control policies. Implement scalable and secure

fine-grained authorization.

cerbos.dev

https://bit.ly/3WGwvaF

